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I. INTRODUCTION

Projectile impact shock initiation of high explosive has long
heen & subject of considerasble interest in the encrgetic
muterials community. C Q%ldernble experimental data has been
cenerated over the years. Numerical modecling of projectile
impact shock initiation for comparison with experiments hus been
reported in u#t least one case. However, a detailed analysis of
thhe flouw fields revecaled by the computations was not presentec.

Lccordingly, we consider in this work the problem of
ccmposition-B (bare as well as confined) impacted by smzall

leh—>pood stecl pro%ectlles. Using the reactive hydrodynamic
codes SIH® and 2DE we have addressed the J(posed problen
numericelly. This approach 1is favored by virtue of its
sinulation capability, detailed results, moderate cost, and lack
of risk to the investipgator. In the following section, we

deseribe the numerical simulation of projectile impact on hare
churges for six different projcectile diameters. Results obhtained
with 2DE for projectile impact arc compared with planar impact
results obtained using SIN. The results were uscd to gencrate
lincar fits which suffice to describe the impact shock initiation
of bare charges consistent with the ec¢ritical cnergy criferion.

1. D. C. Slade and J. Dewey, "High-Order Initiation of Two Military Explosives
by Projectile Impact," Ballistic Research Laboratory Report No. 1021,
July 1957 (AD 145868).

2. S. M. Brown and E. G. Whitbread, "The Initiation of Detonation by Shock
Waves of Known Duration and Intensity,' Les Ondes De Detonation, C.N.R.S.
No. 109 (Paris, 1962), pp 69-80.

3. L. A. Roslund, J. W. Watt, and N. L. Coleburn, "Initiation of Warhead
Explosives by the Impact of Controlled Fragments I. Normal Impact,"
Naval Ordnance Laboratory Technical Rerert NOLTR-73-124, August 1974.

4. K. L. Bahl, H. C. Vantine and R. C. Wllingort, "The Shock Initiation of
Bare and Covered Explosives by Projectile Impact," Seventh Symposium
(International) on Detonation, June 1981, pp 325-335.

5. C. L. Mader and M. S. Shaw, "Users Manual for SIN, A One-Dimensional
Hydrodynamic Code for Problems which Include Chemical Reactions, Elastic
Plastic Flow, Spalling Phase Transitions, Melting, Forest Fire, Detonation
Buildup, and SESAME Tabular Equation of State,' Los Alamos Scientific
Laboratory Report LA-7264-M, September 1978.

6. J. D. Kershner and C. L. Mader, "2DE, A Two-~Dimensional Continuous Eulerian

Hydrodynamic Code for Computing Multicomponent Reactive Hydrodynamic
Problems," Los Alamos Seientific Laboratory Report LA-4846, March 1972.
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Ve then turned our attention to a numerical asscssment of shock
initiation in covered charges. The results show the buildup of
shock to detonation in detail by means of contour plots. UYe also
checked our results with the Jacobs-Roslund formula”’

IT. PROJECTILE IMPACT SHOCK INITIATION OF RARE EYPLOSIVE CHARGES

Geometry and Computational Considerations

In our computations, wec have considered steel cylinders of"
aspect ratio (2&/ ) equal to one and composition-PB charges of
aspect ratio onc-half. Sufficient target material 1is provided
uhen the explosive diamcter is three times the projectile
diametecr. This aspcct ratio is considered adequate to take
account of rarefaction effegts from free surfaces and cdges.
lloreover, Brown and Whitbread show that different aspect rutios,
except for the case of a disc oy < 1/4), do not recsult in
different critical velocities for shock initiation.

Uith the considerations mentioned above, we have sct up
impact problems for 2DE calculations with axisymmetric grids as

sutnmarized in Table 1. llere ¢ 1is the projectile diameter, AR
the radial cell size, I the number of cells along the radial
axis, A Z the axial cell size, J the number of cells along the

axis of symmetry, AT the time step of each conmputing cycle, and N
the total number of cycles to be completed.

TABLE 1

Input Data for 2DE Computational Grids - Nare Charges

) AR I AZ J AT N

(rm) (ram) (mm) (us)

5 0.2h 45 0.25 68 n.00% oo
3 0.u0 AN 0.40 63 0.n10 60
10 0.50 L 0.50 58 0,010 hoo
12 n,40 65 0.40 98 0.010 530
15 0.50 65 0.50 98 0.010 530
18 0.60 €5 0.60 98 0.015 noo

10



Results

A number of graphical representations of our numerical
results are available. The sequence of events in projectile
impact shock initiation 4§s most c¢clearly illustrated in the
series of mass fraction contour plots of - Figure 1a,. The mass
fraction varies from one to zero as chemical reaction in the
explosive runs to completion. The plots show results for impact
of a 5 mm diameter projectile at 1.4 um/uUs. The corresponding
isobar plots are shown in Figure 1b. Detonation, which mzy be
recognized by the close spacing of the contour lines,is observed

to begin at the shock front and spread outward. Similar plots
for the 5 mm projectile at a suberitical impact velocity of 1.2
na/ ys are shown 1in Figures 2a and 2b, In this case, no

detonation devaelops and concentration of the mass fraction
contour lines is not observed. Figure 3 shows mass fraction
contour plots for a projectile 15 mm in diameter with an impact
vclocity of 0.7 mm/ps, in which case initiation resulted. In
contrast to the small diameter, high velocity case, initiation
here first appears after the shock has propagated some distance
from the impact point. The ensuing <«detonation propagates
outwards. This latter observation 1is typical of =211 4he
computations for ¢ > 5 nnm.

e also made computations comparing projectiles of diffcrent
aspect ratio. Mass fractlon contour plots for the 1.2 mm/y s
impact of & 10 mm diameter projectile with aspect ratios of 1.C
and 1.5 are shown in Figure 4, The results show that the flow
fields created in the two cases are essentially identical during
the period required for buildup to detonation. Computations were
made with impact velocity varied in steps of 0,2 mm/us until the
mininum velocity for a shock-to-detonation transition was
determined for each projectile diameter,. Some one- and
two-dimensional results are listed in Table 2, where ¢ is the
projectile diametcr 1in the case of two-dimensional computations
and flyer plate thickness in the case of one-dimensional
conputations, Vg, is the critical velocity, P, the peak pressure
of the initial shock pulse in the cxplosive, X, the distancc of;
shock run to detonation, T, the time of run to detonatiion, and £¢
is a parameter equivalent to the critical energy criterion, We
alse ilwnclude the corresponding resulfs p., Xy4 8nd Lty obtaimesd
from the one-dimensional computation using SIN which produces the
same criticel velocities. Using the detonation pressure, P =
22.4 GPa, for composition-B, we have calculated the average rate
of shoeck buildup Y,, y, and the gradient of shock buildup Zun Zg
defined as follows:

Yy = (Pog = Pr)/Ty,
Ye = (Pop = pi)/t,,
Z, = (PCJ - PI)/X*'
zy = (Poy = PIY/%,.

It should be notegdthat conditions cited as criticael in the table
may be very close to critical or as much as 0.2 mm/ld s above the
cited value. Thus, our definition of critical valucs is not
entirely unifornm.

11
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In Figure 5 we have plotted ‘critical velocity obtained in our
2DE calculations versus the pariameter 1//¢ for comparison with
the NOL empirical formula. Our computed critical velocities fall
slightly below the experimental values but still exhibit the
characteristic linear dependence on 1//¢4 .. The straight line of

Figure 5 can be described by thel equation:
| '

Va = a &b /Vb e ¢))
with constants a .= -0.16 mm/y's and b, = 3.33 mm ,/us. The
critical velocity at ¢ =5 mm appears to deviate somewhat from

the linear relation and has not been included in the fit. Thig
is apparently a consequence of the altcrnate mode of buildup
observed for the small-diameter high-velocity case. It may ba
noted that Equé}ion (1) has been used for a long time. (Note a,=o
and b1=3.26 mtf1 3 zlus for composition-B in Reference 1.)

As previously noted, our cited critical conditions vary from
the actual conditions in a nonuniform manner. It is of interest
to observe how closely the paths to initiation conform to the
Pop-plot for comp-B. This is 1llustrated in Figure 6. The SIN
results are all seen to lie reasonably close to the Pop-plot
indicating that the single-curve buildup hypothesis (implied in
Forest Fire) is applicable to the one-dimensional situation.
However, for the multidimensional projcctile impact casc buildup
deviates considerably from the Pop-plot. This appears to be
chiefly due to the near critical naturc of the cases considered
while the Pop-plot represents supercritical buildup. For
example, the computation at ¢ = 10 mm almost doesn't initiate.
The pressure first builds,.then drops off and finally rises again
to the CJ value. This is clearly our most nearly critical case.

The computation at¢ = 8 mm is more supercritical and conforms
more exactly to the Pop-plot. Only one point could be obtained
at ¢ = 10 mm. This point lies below the Pop-plot while the

results at larger diameters were generally above the Pop-plot.
This gives a third indication that the buildup to detonation
proceeds somewhat differently in the small-diameter,
tiigh-velocity case.

In the literature, the critical energy <titerion 7 has been
very popular for the study of one-dimensional shock initiation
(as in the wedge test). If this criterio? is applicable to our
tvo-dimensional study, then we must have V, ¢ =constant, Yet our
numefical results of Table 2 do not maintain a strict constancy
of V, ¢ . However, some of this may be explained by ¢the
nonuniform determination of the critical condition .

In the original derivation of the critical energy criterion,
the shape and width of the initial shock pulse play an important
role in characterizing the shock initiation. In our

7.- F. E; Walker and R. J. Wasley, " Critical Energy for Shock Initiation of
Heterogeneous Explosives, ! FExplositvstoffe Mr. 1, 1969, pp 9-13.
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two-dimensional impact problem, the pulse shape and duration ar:
sffeeted by wrarvefaction waves 1lssuing from free surfesces and
edges., It appears, however, that the reactive skock in the
explosive can accelerate to detonation by s=elf-—support providod
the necessary conditions are satisfied. A number of other linear
relations among the problem parameters ware observed Uy
illustrated in Figures T-11. The following linear fits can ssarve
to complement Equation (1) and provide s full deseription of the
initiation process in terms of the stimulus,

PI =a,+ bgﬁ, = a; + b; /e (2)
T, = ag + bgo (3)
X, = a, + b,T, (4)
Y, = a. + bV, = a; + b;//cb (5)
Zo = ag + b6V* = a; + b;//¢ (6)

The values of the constants are given in Table 3. It sliould bea
noted that Equation (4) represents a relationship that is a
property of the explosive only. The foregoing lincar relations
also appear to hold good for our SIN results. In faect, the OIl
results fit straight lines even better in Fipgures 7-11.

ITI. SHOCK INITIATIO!N COF COVERED EXPLOSIVE CHARGFES

We have also addressed the related problen posed by
introducing a steel plate of thickness h between the steel
projectile and the composition-B. Table Y4 summarizes our new
grids. Ve have considered projectile diameters of 5,%2,10,12 and
15 mm and cover plates of one-third and one-haslf the diameter in
each case.

Detonation in the covered charges develops in a2 nanncr
similar to the bare charges as illustrated in the mass-fracticn
contour plots of Figure 12 for a 15 mm projectile with an impact
velocity of 1.0 mm/us.

The critical parameter-values are summarized in Tnable 5. For
h/d = 1/3, tire, eritieall energy criterien (Vf ¢ = Const)ls followed
almost exactly except in the 5 mm diameter case. The constancy

of Vf¢, is also good for h/d = 1/2.
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Input Data For 2DE Computational Grids - Covered Rharges

TABLE 4

o AR I AZ J AT N
h/¢  (mm) (mm) (mm) (us)
5 0.125 us5 0.125 125 0.0025 s, DI
3] 0.200 b5 0.200 125 0.0050 ant
173 10 0.250 45 8::250 125 0.0050 200
12 0.240 55 0.240 140 C.0050 200
15 0.300 55 0.300 140 0.0080 700
5 0.125 45 0.125 140 0.0025 1,000
& 0.200 L5 0.200 125 0.0050 1,000
1/2 10 0.250 us 0.250 125 n,.00%0 eoo
2 0.240 55 0.240 140 0.C050 1,000
5 0.300 55 0.200 140 c.0020 7090
TABLE 5
Summary of Computed Critical Values - Covered Charges
2
h/é V' 3V*¢2 PI X, T, Nz Z,
(mm)  (mm/ps) (mm™/us™) (Gpa) (mm) (us) (GPa/us) (GPa/mm)
5 1.4 2.80 10.0 e 18 .24 7546 16.3
8 g2 12.10 10.0 1.8 0.35 52.6 1C.2
1/2 10 1.1 12.1¢C 10.0 2a3 0.50 36.8 5.0
12 1.0 12.00 300 2.5 0.0n 3u.0 .1
15 0.9 12.15 7.C Bial 6.90 2306 5.9
5 1 7 14,45 14.0 0.63 0.1 148.0 22.9
8 1.4 15.60 14,0 0.8 O ba.o 1€.0
1/72 10 o 15.90 12.0 1.0 0.3 54.7 1€.4
12 illee2 16,15 11.0 23 0.4 U3.6 7.6
15 1.0 15.00 10.0 3.6 1.0 1.4 5.1
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The Jscobs-Roslund (NOL) formulas

covered charges may be written

for normal impact against

Vo=V, L+ /)7 = v+ AV )
Plotting V., versus 1/¥¢ , as in Figure 13, allows a comparison of
tke computed results ath/¢ = 0,1/3and 1/2 with the results of the
Jeeobs-Roslund formulas with V =0 and A = 3.13 mm 3/2/'p5, Cnly
at the smaller projeectile diamefer do the results for the covercd
charges differ significantly from the linear relationships
Jefined by the bare charge results . ‘In addition, the covered
charge results tend to diverge from one another at smazller
diameters,

Plots corresponding to those of Figures 7-11 for the bhare
eharge problem have &@lso been eonstructed in the covered echargsz
case., These are shown in Figures 14-17. Fipgure 16, whichn
corresponds to Figure 9, shows the distance to detonation plotted
versus the time to detonation, As previously noted, this is
strictly oan explosive property aseecording to the single-curve
buildup hypothesis and should be independent of h/¢.

IV. SUMMARY

Using the SIN and 2DE hydrodynamic computer eodes, we have
conducted & numerieal study of the shock initiation response of
beth bare and covered composition-B eharges to projeetile impact.

In the bare charge case we observed two modes of shoek
initiation. In the case of larger projeetile diameters, the
detonation is observed to begin at some distance from the impact

point and propagate outward. When the projeetile diameter is
suffieiently small (and the eritieal velocity correspondingly
large) detonation oecurs almost immediately., We also verified

tthhe independence of the shoek initiation response with respeet to
projectile aspeet ratio. We then determined eritieal eonditions
for shock initiation for six different projectile diameters with

urit aspect ratio. Except for the case of the smallest
projectile (¢= 5 mm), the critiecal veloeity was observed to have
a linear dependence on 1/v¢ with values falling 2 little bhelow

the NOL empirical 1line. The progress of buildup to detonation
wes observed and found to elosely follow the Pop-plot when the
impact was suffieiently supereritieal, Finally, we ygenerated
additional 1linear relations to ecompletely describe buildup to
detonation in the eritieal ecase.

In the ease of eovered charges, we found that the development
of detonation is similar to that observed for bare echarges,
Critieal veloeities and other parameters were dotermined as for
tlie bare charges. The eritical veloeities, when adjusted for
cover plate thickness aceording to the Jacobs-Roslund formula,
vere found to agree well with the bare eharge results at larger
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projectile diameters and to diverge from the bare charge results and from each
other with decreasing projectile diameter.
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